Symmetrized (p,h)-convexity and some Hermite-Hadamard-type inequalities
Main Article Content
Symmetrized (p,h)-convexity and some Hermite-Hadamard-type inequalities
Tóm tắt
This paper introduces symmetrized (p,h)-convex functions and establishes some Hermite-Hadamard-type inequalities for the new class of functions.
Article Details
Chuyên mục
Khoa học Tự nhiên & Công nghệ
Tác phẩm này được cấp phép theo Giấy phép quốc tế Creative Commons Attribution-NonCommercial-NoDeri Phái sinh 4.0 .
Tài liệu tham khảo
- Dragomir, S. S., & Pearce, C. (2003). Selected topics on Hermite-Hadamard inequalities and applications. RGMIA Monographs, Victoria University.
- Dragomir, S. S. (2016). Symmetrized convexity and Hermite-Hadamard-type inequalities. Journal of Mathematical Inequalities, 10(4), 901-918.
- Fang, Z. B., & Shi, R. (2014). On the (p, h)-convex function and some integral inequalities. Journal of Inequalities and Applications, 2014(1), 1-16.
- Hadamard, J. (1893). Étude sur les propriétés des fonctions entiéres et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58, 171–215
- Hermite, Ch. (1883). Sur deux limites d'une intégrale dé finie. Mathesis, 3, 82.
- İşcan, İ. (2020). Symmetrized p-convexity and related some integral inequalities. arXiv preprint arXiv:1901.09907.
- Mitrinović, D. S., & Lacković, I. B. (1985). Hermite and convexity. Aequationes Mathematicae, 28(1), 229-232.
- Noor, M. A., & et al. (2015). Some integral inequalities for harmonically h-convex functions. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 77(1), 5-16.
- Varošanec, S. (2007). On h-convexity. Journal of Mathematical Analysis and Applications, 326(1), 303- 311.
- Wu, S., & et al. (2017). Inequalities related to symmetrized harmonically convex functions. arXiv:1711.08051v1 [math.CA] 4 Nov 2017.
- Zhang, K.S., & Wan, J.P. (2007). p-convex functions and their properties. Pure and Applied Mathematics, 23(1), 130-133.