Các hợp chất tự nhiên ức chế enzyme mục tiêu kháng bệnh Alzheimer từ một số cây thuốc tiềm năng
Main Article Content
Các hợp chất tự nhiên ức chế enzyme mục tiêu kháng bệnh Alzheimer từ một số cây thuốc tiềm năng
Tóm tắt
Bệnh Alzheimer (Alzheimer’s disease, AD) là bệnh rất phổ biến hiện nay, liên quan đến rối loạn chuyển hóa ở não bộ và thần kinh, biểu hiện bệnh là mất trí nhớ, rối loạn nhận thức. AD có xu hướng ngày càng gia tăng trong thế giới hiện đại. Nguyên nhân chính của bệnh là do rối loạn chuyển hóa ở tế bào thần kinh, tế bào não. Sự rối loạn chuyển hóa này đều liên quan đến hoạt tính của nhiều enzyme khác nhau. Các nghiên cứu hiện nay đều có xu hướng tìm kiếm các hợp chất tự nhiên, an toàn có hoạt tính ức chế các enzyme tham gia vào quá trình chuyển hóa gây nên bệnh AD. Các nhóm hợp chất tự nhiên khá đa dạng và phong phú được tách chiết từ thực vật, nấm, địa y. Tây Nguyên và Việt Nam có đa dạng sinh học cao, có nguồn tài nguyên phong phú để nghiên cứu và khai thác các hợp chất tự nhiên phòng trị bệnh AD. Bài báo này tổng hợp các nghiên cứu từ xác định nguyên nhân gây bệnh, cơ sở hóa sinh bệnh và các nghiên cứu mới về các hợp chất tự nhiên từ thực vật, nấm, địa y để ức chế các enzyme mục tiêu tham gia vào quá trình chuyển hóa và gây nên bệnh AD. Bài báo có ý nghĩa tổng hợp và định hướng cho các nghiên cứu trong thời gian tới.
Article Details
Tài liệu tham khảo
- Đặng Kim Thu, Hoàng Thị Thúy, Bùi Thị Thanh Duyên, Lục Thị Thanh Hằng, Nguyễn Thị Trang, Bùi Sơn Nhật, Trần Thị Quỳnh Hoa, Dương Thị Kỳ Duyên, Bùi Thanh Tùng (2019). Nghiên cứu tác dụng ức chế Enzym Acetylcholinesterase và quét gốc tự do DPPH của cây Bơ (Persea Americana Mill.), VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 35, No.1; 19-30.
- Phạm Thị Tuyết Lan, Phạm Quốc Tuấn, Nguyễn Quốc Tuấn, Hà Quang Lợi, Hà Thanh Hòa, Nguyễn Đức Hùng (2019). Tác dụng ức chế Acetyl cholinesterase của Alkaloid phân lập từ củ cây bình vôi (Stephania sinica Diels), Tạp chí Khoa học Công nghệ, Trường Đại học Hùng Vương, 14, 1: 60–67.
- Alzheimer Association (2018). Alzheimer’s Disease Facts and Figures, https://www.alz.org/aaic/2018_news_releases.asp.
- Mazumder, M.K., Choudhury, S. (2019). Tea polyphenols as multi-target therapeutics for Alzheimer disease: An in-silico study, Medical Hypotheses. 125: 94-99.
- Alam, J., Sharma, L. (2019). Potential Enzymatic Target in Alzheimer’s: A Comprehensive Review, Curr Drug Target; 20(3):316-339. doi: 10.2174/1389450119666180820104723.
- Azam, F., Amer, AM., Abulifa, AR., and Elzwawi, MM. (2014), Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer’s drugs: a computational investigation, Drug Des Devel Ther. 2014; 8: 2045–2059.
- Mudher A, Lovestone S (2002). «Alzheimer›s disease-do tauists and baptists finally shake hands?». Trends in Neurosciences. 25 (1): 22–26. doi:10.1016/S0166-2236(00)02031-2
- Dinda, B., Dinda, M., Chakraborty, A. (2019). Therapeutic potentials of plan iridoids in Alzheimer and Parkinson diseases: A review, Eur J. Med. Chem., 169: 185-199.
- Gurbur, P., Martinez, A., Perez, C., Ayran, I. (2019). Potential anti Alzheimer effects of selected Lamiaceae plants through polypharmacology on glycogen synthease kinase 3b, b secretases, and casein kinase 1d. Industrial Crops & Products. 138: 111431.
- Shiao, YJ., Su, MH, Lin, HC and Wu, CR (2017). Acteoside and Isoacteoside Protect Amyloid β Peptide Induced Cytotoxicity, Cognitive Deficit and Neurochemical Disturbances In Vitro and In Vivo, Int. J. Mol. Sci., 18, 895; doi:10.3390/ijms18040895.
- Huang, S., Yang, W., Xia, P., Pei, G. (2017). Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer’s Disease. Stem Cell Report. 8: 84-94.
- Handa SS, Rakesh DD. and Vasisht K (2006). Compendium of medicinal and aromatic plants Asia. ICSUNIDO, Italia
- Herrmann N, Tam DY, Balshaw R, et al (2010). The relation betweendisease severity and cost of caring for patients with Alzheimerdisease in Canada. Can J Psychiatry. 55(12):768–775.
- Hardy J, Allsop D (1991). “Amyloid deposition as the central event in the aetiology of Alzheimer›s disease”. Trends in Pharmacological Sciences. 12 (10): 383–388.
- Cummings, J., Lee, G., Ritter, A., Sabbagh, M., Zhong, K. (2019). Alzheimer’s disease drug development pipeline: Alzheimer’s & Dementia: Translational Research & Clinical Interventions 5: 272-293.
- Shen, Y.-C., Juan, C.-W., Lin, C.-S., Chen, C.-C., Chang, C.-L. (2017). Neuroprotective effect of Terminalia chebula extracts and ellagic acid in pc12 cells. Afr. J. Tradit. Complement. Altern. Medicines 14, 22–30.
- Afshari, A. R., Sadeghnia, H. R., Mollazadeh, H. (2016). A review on potential mechanisms of Terminalia chebula in Alzheimer’s disease. Adv. Pharmacol. Sci. 2016, 1–15. doi: 10.1155/2016/8964849
- Sobhani, R., Mitra, S., Aguan, K. (2018). Terminalia chebula: A promising indigenous phytotherapeutics for Alzheimer disease. Pharmacogn. Mag. 1-6.
- Lin, Y L, Tsay, H J, Liao, Y F, Shiao, Y J (2012). The Components of Flemingia macrophylla Attenuate Amyloid β-Protein Accumulation by Regulating Amyloid β-Protein Metabolic Pathway, Evid Based Complement Alternat Med. 2012;2012:795843. doi: 10.1155/2012/795843.
- Shie, F.-S. Liu, H.-K, and Shiao, Y.-J.*(2017). Astragalus membranaceus-polysaccharides ameliorates obesity, hepatic steatosis, neuroinflammation and cognition impairment without affecting amyloid eposition in metabolically stressed APPswe/PS1dE9 mice. International Journal of Molecular Sciences 18(12): E2746.
- Tzeng, T.-T., Chen, C.-C., Chen, C.-C., Lee, L.-Y., Chen, W.-P., Lu, C.-K., Huang, C.-Y.-F., Shen, C.-C. and Shiao, Y.-J. (2018). The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer’s Disease-Related Pathologies in APP/PS1 Transgenic Mice, International Journal of Molecular Sciences 19(2), E598.
- Wang, G., Wang, M M., Wang, C., Qin, L.H. (2018). Spore powder of Ganoderma lucidum for the treatment of Alzheimer disease: A pilot study. Medicine. 1-4.
- Lee, JS., Min, GH., and Lee, JS (2009). Nutritional and Physicochemical Characteristics of the Antidementia Acetylcholinesterase-Inhibiting Methanol Extracts from Umbilicaria esculenta, Microbiology, 37(3): 203–206.
- Ghane, S. G., Yadav, B., Lekhak, M.M (2018). Antioxidant, Antidiabetic, acetylcholinesterase inhibitory potential and estimation of alkaloids (lycorine and galanthamine) from Crinum species: An important source of anticancer and anti-Alzheimer drug. Industrial Crops & Products. 125: 168-177.
- Chen, B-W., Li, W. X., Wang, G. H., Huang, H. J. (2018). A strategy to find novel candidate anti Alzheimer disease drugs by constructing interaction networks between drug target and natural compounds in medical plants. PeerJ. 1-21.
- Kolaj I, Liyanage SI, Weaver DF (2018). Phenylpropanoids and Alzheimer’s disease: a potential therapeutic platform. Neurochem Int. 120:99–111.
- Paudel, P., Seong, SH., Zhou, Y., Park, CH., Takako Yokozawa, Jung HA. and Choi, J S. (2018). Rosmarinic Acid Derivatives’ Inhibition of Glycogen Synthase Kinase-3β Is the Pharmacological Basis of Kangen-Karyu in Alzheimer’s Disease. Molecules 2018, 23, doi:10.3390/molecules23112919.
- Jiang, XY., Ting-Kai Chen, Jun-Ting Zhou, Si-Yu He, Hong-Yu Yang, Yao Chen, Wei Qu, Feng Feng, and Hao-Peng Sun (2018). Dual GSK-3β/AChE Inhibitors as a New Strategy for Multitargeting Anti-Alzheimer’s Disease Drug Discovery. ACS Med. Chem. Lett. 9, 171−176.
- Zhao, C., Zhang, H., Li, H., Liu, X., Zhang, W. (2017). Geniposide ameliorates cognitive deficits by attenuating the cholinergic defect and amyloidosis in middle aged Alzheimer model mice. Neuropharmacology, 116: 18-29.
- Chomchalow, N. (2013). Curing icurable Alzheimer disease with medicinal plants. Au.J.T. 16(4):215-220.
- Eun Bi Kuk, A. RaJo • Seo In Oh Hee Sook Sohn, Su Hui Seong, Anupom Roy, Jae Sue Choi, Hyun Ah Jung (2017). Anti-Alzheimer’s disease activity of compounds from the root bark of Morus alba L. Arch. Pharm. Res. DOI 10.1007/s12272-017-0891-4.
- Reddya1, R.G., Lenin Veeravala1, Swati Maitraa, Marylène Chollet-Kruglerb, Sophie Tomasib, Françoise Lohézic-Le Dévéhatb, Joël Boustieb, Sumana Chakravartya (2016). Lichen-derived compounds show potential for central nervous system therapeutics. Phytomedicine, (2016) Doi:10.1016/j.phymed.2016.08.010.
- Jung, H A., Ali, MD., Jung, HJ., Jeong, HO., Chung, HY., Choi, JS (2016). Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases, Journal of Ethnopharmacology; Vol. 191, 15, 152-160.
- Jung, H A., Karki, S., Kim, JH., Choi, JS (2014). BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Arch. Pharm. Res. DOI 10.1007/s12272-014-0492-4.
- Pejin, B. , Tommonaro, G, Iodice, C., Vele Tesevic & Vlatka Vajs (2012). Acetylcholinesterase inhibition activity of acetylateddepsidones from Lobaria pulmonaria. Nat Pro Res., 26 (17), 1634-7.
- Chethana KR, Senol FS, Orhan IE, Anilakumar KR, Keri RS. (2017). Cassia tora Linn: A boon to Alzheimer’s disease for its anti-amyloidogenic and cholinergic activities.
- Song, XY., Hu, JF., Shi-Feng Chu, Zhao Zhang, Shuang Xu, Yu-He Yuan, Ning Han, Yan Liu, Fei Niu, Xin He, Chen, N (2013). Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats, European Journal of Pharmacology 710; 29–38.
- Nguyen, VB, TQ Ton, TT Nguyen, TN Ngu, TH Nguyen, CT Doan, TN Tran, MT Nguyen, AD Nguyen, SL Wang (2019). Reclamation of beneficial bioactivities of herbal antioxidant condensed tannin extracted from Euonymus laxiflorus. Research on Chemical Intermediates 46 (11), 4751-4766.
- Nguyen, VB., DN Nguyen, AD Nguyen, VA Ngo, TQ Ton, CT Doan, SL Wang (2020). Utilization of Crab Waste for Cost-Effective Bioproduction of Prodigiosin; Marine Drugs 18 (11), 523.
- Wang, SL., TH Nguyen, CT Doan, TN Tran, YH Kuo, QV Nguyen, AD Nguyen (2020). New indications of potential rat intestinal α-glucosidase inhibition by Syzygium zeylanicum (L.) and its hypoglycemic effect in mice, Research on Chemical Intermediates 45 (12), 6061-6071.
- Nguyen, VB, AD Nguyen, QV Nguyen, SL Wang (2017). Porcine pancreatic α-amylase inhibitors from Euonymus laxiflorus Champ.; Research on Chemical Intermediates 43 (1), 259-269.
- Hoang Viet Dung, To Dao Cuong, Nguyen Minh Chinh, Do Quyen, Jeong Ah Kim, Byung Sun Min (2014). Compounds from the aerial parts of Piper bavinum and their anti-cholinesterase activity, Archives of Pharmacal Research, 38, 677–682.
- Nguyen NC, Nguyen, TTH, Tran MH and Tran CL (2014). Anti-Cholinesterase Activity of Lycopodium Alkaloids from Vietnamese Huperzia squarrosa (Forst.) Trevis, Molecules, 19, 19172-19179.
- Lam, TML, Nguyen, TMT*, Nguyen, XH, Dang, PH, Nguyen, NT, Tran, MH, Nguyen, TH, Nui Minh Nguyen, Byung Sun Min, Jeong Ah Kim, Jae Sue Choi and Mao Van Can (2016). Anti-cholinesterases and memory improving effects of Vietnamese Xylia xylocarpa. Chemistry Central Journal; 10:48.
- Pham, TN, Vo Thi Quynh Nhu, Tran Thi Phuong Thao, Le Thi Thu Ha, Tran Van Loc, Tran Van Chien, Tran Van Sung (2019). Chemical composition and the inhibitionofacetyl cholinesterase activity of Centella asiaticafrom Quang Tho village, Quang Dien district, Thua Thien –Hue province, Vietnam J. Chem., 2019, 57(3), 347-351.
- Tran, TS, Le, MT, Tran, TD, Thai, KM (2020). Design of Curcumin and Flavonoid Derivatives with Acetylcholinesterase and Beta-Secretase Inhibitory Activities Using in Silico Approaches, Molecules, 25, 3644.