Nhóm hợp chất phenazine từ vi khuẩn Pseudomonas aeruginosa: Hoạt tính sinh học và ứng dụng

Main Article Content

Nhóm hợp chất phenazine từ vi khuẩn Pseudomonas aeruginosa: Hoạt tính sinh học và ứng dụng

Tác giả

Nguyễn Thị Hạnh
Nguyễn Văn Bốn

Tóm tắt

Phenazine là một trong những nhóm lớn nhất của các chất chuyển hóa dị vòng chứa nitơ được báo cáo. Do sở hữu các hoạt tính sinh học phong phú và có triển vọng ứng dụng thực tiễn nên phenazine đã và đang thu hút nhiều sự quan tâm nghiên cứu. Nguồn tự nhiên của nhóm chất này được sinh tổng hợp bởi vi khuẩn, nổi bật là Pseudomonas – chi vi khuẩn tổng hợp khoảng 1/3 tổng số phenazine đã biết. Pseudomonas aeruginosa là chủng vi khuẩn rất phổ biến có khả năng sản xuất tới 11 hợp chất thuộc nhóm phenazine. Phenazine có nhiều hoạt tính sinh học như kháng khuẩn, kháng nấm và được ứng dụng trong nhiều lĩnh vực như y dược học, nông nghiệp và các ngành khác. Cho đến nay vẫn chưa có tài liệu tổng hợp thông tin về phenazine do P. aeruginosa sản xuất cùng với các hoạt tính sinh học của chúng. Bài tổng quan này tập trung thu thập thông tin và thảo luận về đặc tính hóa học, hoạt tính sinh học và tính an toàn của các hợp chất phenazine sinh tổng hợp từ vi khuẩn P. aeruginosa và các định hướng nghiên cứu, ứng dụng.

Article Details

Chuyên mục
Khoa học Tự nhiên
Tiểu sử của Tác giả

Nguyễn Thị Hạnh

Khoa Khoa học Tự Nhiên và Công nghệ, Trường Đại học Tây Nguyên

Nguyễn Văn Bốn

Viện Viện Công nghệ Sinh học và Môi trường, Trường Đại học Tây Nguyên;
Tác giả liên hệ: Nguyễn Văn Bốn, ĐT: 0842458283, Email: nvbon@ttn.edu.vn.

Tài liệu tham khảo

  • Alka R, Wamik A (2019). An overview on biosynthesis and applications of extracellular pyocyanin pigment and its role in Pseudomonas aeruginosa pathogenesis. Annals of Phytomedicine, 8(2): 28-42.
  • Anjaiah V, Cornelis P, Koedam N (2003). Effect of genotype and root colonization in biological control of Fusarium wilts in pigeon pea and chickpea by Pseudomonas aeruginos PNAI. Can J Microbiol, 49(2): 85-91.
  • Ashutosh U, Sheela S (2011). Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiol. Res., 166(4): 323-335.
  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002). Induction of systemic resistance to Botrytis Cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol Plant Microbe Interact, 15(11): 1147-1156.
  • Aunchalee N, Sukanya A, Chanokporn P, Paweena P, Saksit C, Chalerm R (2009). Synthesis, isolation of phenazine derivatives and their antimicrobial activities. Walailak J Sci & Tech, 6(1): 79-91.
  • Baron SS, Rowe JJ (1981). Antibiotic action of pyocyanin. Antimicrobial Agents Chemother, 20(6): 814-820.
  • Bentley RK, Holliman FG (1970). Pigments of Pseudomonas species. III. The synthesis of dimethylaeruginosin B and aeruginosin B. J. Chem. Soc. Ser., 2447–2457.
  • Biessy A, Filion M (2018). Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics. Environ. Microbiol, 20: 3905–3917.
  • Bilal M, Guo S, Hafiz MNI, Hongbo H, Wei W, Xuehong Z (2017). Engineering Pseudomonas for phenazine biosynthesis, regulation, and biotechnological applications: a review. World J Microbiol Biotechnol, 33: 191.
  • Birkofer L (1947). L. Ch1ororaphine: further co1ored metabo1ism product of Bacillus pyoeyaneus. Chem. Ber. 80: 212-214.
  • Brent C, Nawaporn V, Daniel GL, Grace JY, Alan S, Frederick MA (2013). Identification of Pseudomonas aeruginosa Phenazines that Kill Caenorhabditis elegans. PLoS Pathogens, 9(1): e1003101.
  • Briard B, Bomme P, Lechner B, Gaetan M, Virginie L, Marie CP, Jean PL, Hubertus H, Anne B (2015). Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep, 5(2): 8220.
  • Cardozo VF, Oliveira AG, Nishio EK, Perugini MR, Andrade CG, Silveira WD, Durán N, Andrade G, Kobayashi RK, Nakazato G (2013). Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob, 12(1): 12.
  • Chin AWTFC, Bloemberg GV, Lugtenberg BJ (2003). Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol, 157(3): 503 - 523.
  • Cimmino A, Evidente A, Mathieu V, Andolfi A, Lefranc F, Kornienko A, Kiss R (2012). Phenazines and cancer. Nat. Prod. Rep., 29(4): 487.
  • Dakhama A, Noüe J, Lavoie MC (1993). Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa . J Appl Phycol, 5: 297–306.
  • Dasgupta D, Kumar A, Mukhopadhyay B, Sengupta TK (2015). Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells. Appl Microbiol Biotechnol, 99: 8653–8665.
  • DeBritto S, Gajbar TD, Satapute P, Lalitha S, Ramachandra YL, Sudisha J, Shinichi I (2020). Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci Rep, 10(1).
  • Denning GM, Iyer SS, Reszka KJ, O’Malley Y, Rasmussen GT, Britigan BE (2003). Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. Am. J. Physiol. Lung Cell Mol. Physiol., 285(3): 584-592.
  • Dharni S, Alam M, Kalani K, Abdul K, Samad A, Srivastava SK, Patra DD (2012). Production, purification, and characterization of antifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannery waste polluted soil. J Microbiol Biotechnol., 22(5): 674-83.
  • Diaa AM, Haitham SM (2020). Biological activity and applications of pyocyanin produced by Pseudomonas aeruginosa. Open Acc J Bio Sci. 1(4): 140-144.
  • Fordos J (1859). Recueil des Travaux de la SocietP dEmulation pour les Sciences Pharmaceutiques 3:30.
  • Fordos J (1863). Recherches surles matieres colorantes des suppurations bleues, pyocyanine et pyoxanthose. CR Hebd Seances Acad Sci., 56: 1128-1131.
  • Gerber NN (1969). New microbial phenazines. J Heterocycl Chem, 6: 297– 300.
  • Gessard C (1882). Sur les colorations bleue et verte des linges à pansements. Comptes-rendus hebdomadaire des séances de l’. Acad Sci, 94:536–538.
  • Gessard C (1917). Compte Rendu de I’Academie des Sciences 165: 1071.
  • Gessard C (1919). Annales de I’lnstitul Pasteur 33: 251 Gibson J, Sood A, Hogan DA (2009). Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol., 75(2): 504-513.
  • Gonçalves T, Vasconcelos U (2021). Colour me blue: the history and the biotechnological potential of pyocyanin. Molecules, 26(4): 927.
  • Hassani HH, Hasan HM, Al-Saadi A, Ali AM, Muhammad MH (2012). A comparative study on cytotoxicity and apoptotic activity of pyocyanin produced by wild type and mutant strains of Pseudomonas aeruginosa. Eur J Exp Biol, 2(5): 1389-1394.
  • Herbert RB, Holliman FG (1964). Aeruginosin B—A naturally occuring phenazinesulphonic acid. Proceedings of the Chemical Society, 19.
  • Herbert RB, Holliman FG (1969). Pigments of Pseudomonas species. II. Structure of aeruginosin B. J Chem Soc Perkin 1, 18: 2517-2520.
  • Hina S, Sania M, Quratulain S, Muhammad QJ, Ahmad A (2021). Bio-characterization of food grade pyocyanin bio-pigment extracted from chromogenic Pseudomonas species found in Pakistani native flora. Arab. J. Chem., 14(3): 103005.
  • Holliman FG (1957). Pigments from a red strain of Pseudomonas aeruginosa. Chemistry and Industry, 1668.
  • Holliman FG (1961). Some bacterial pigments (phenazines). S. Afr. ind. Chem., 15: 233.
  • Holliman FG (1969). Pigments of Pseudomonas species. Part I. Structure and synthesis of aeruginosin A. J Chem Soc, 2514-2516.
  • Houshaymi B, Awada R, Kedees M, Soayfane Z (2019). Pyocyanin, a metabolite of pseudomonas aeruginosa, exhibits antifungal drug activity through inhibition of a pleiotropic drug resistance subfamily FgABC3. Drug Res (Stuttg), 69(12): 658-664.
  • Jasim B, Anisha C, Rohini S, Kurian JM, Jyothis M, Radhakrishnan EK (2014). Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol, 30(5): 1649-54.
  • Jayaseelan S, Ramaswamy D, Dharmaraj S (2014). Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol, 30: 1159–1168.
  • Jordan EO (1899). Bacillus pyocyaneus and its pigments. The Journal of Experimental Medicine, 4(5-6):627-647.
  • Kaleli I, Cevahir N, Demir M, Yildrim U, Sahin R (2007). Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses, 50(1): 74-78.
  • Kanda S, Wirach W, Chanokporn P, Chalerm R (2009). Isolation and analysis of antibacterial substance produced from P. aeruginosa TISTR 781. KKU Sci. J., 37(2): 163-172.
  • Kanugala S, Jinka S, Puvvada N, Rajkumar B, Ganesh KC (2019). Phenazine-1-carboxamide functionalized mesoporous silica nanoparticles as antimicrobial coatings on silicone urethral catheters. Sci Rep, 9(1): 6198.
  • Kennedy RK, Naik PR, Veena V, Lakshmi BS, Lakshmi P, Krishna R, Sakthivel N (2015). 5-Methylphenazine-1-carboxylic acid: A novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chemico-Biological Interactions, 231: 71–82.
  • Kerr JR, Taylor GW, Rutman A, Hoiby N, Cole PJ, Wilson R (1999). Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol, 52(5): 385-387.
  • Korneel R, Nico B, Monica H, Andwilly V (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science & Technology, 39(9): 3401-8.
  • Korth H (1962). Uber die se1ektive Bildung von Phenazin-a-carbonsaure bei PseudOmonas aeruginosa in sauerem Milieu und deren Eigenschaft als Redoxkata1ysator. Zentrab1. Bakterio1. Parasitenk. Infektionskr. Ryg. Abt. l. Orig. 185: 511-515.
  • Laursen JB , John N (2004). Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chemical Reviews, 104(3): 1663–1686.
  • Laxmi MS, Bhat G (2016). Characterization of pyocyanin with radical scavenging and antibiofilm properties isolated from Pseudomonas aeruginosa strain BTRY 1. 3 Biotech, 6(1): 27.
  • Lee KW, Omar D, Cheng GLE, Nasehi A, Wong MY (2018). Characterization of phenazine and phenazine-1-carboxylic acid isolated from Pseudomonas aeruginosa UPMP3 and their antifungal activities against Ganoderma boninense. Pertanika J. Trop. Agric. Sci., 41(4): 1795-1809.
  • Leisinger T, Margraff R (1979). Secondary metabolites of the fluorescent pseudomonads. Microbiol Rev, 43: 422–442.
  • Liu H, He Y, Jiang H, Peng H, Huang X, Zhang X, Linda ST, Xu Y (2007). Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere, Curr Microbiol, 54(4): 302-306.
  • Liu TT, Ye FC, Pang CP, Yong TQ, Tang WD, Xiao J, Shang CH, Lu ZJ (2020). Isolation and identifcation of bioactive substance 1-hydroxyphenazine from Pseudomonas aeruginosa and its antimicrobial activity. Lett Appl Microbiol, 71(3): 303–310.
  • Look DC, Stoll LL, Romig SA, Humlicek A, Britigan BE, Denning GM (2005). Pyocyanin and its precursor phenazine-1-carboxylicacid increase IL-8 and intercellular adhesion molecule-1 expression in hu-man airway epithelial cells by oxidant-dependent mechanisms. J. Immunol., 175(6): 4017-4023.
  • Makarand RR, Prashant DS, Bhushan LC, Sudhir BC (2007). Detection, isolation and identification of phenazine-1-carboxylic acid produced by biocontrol strains of Pseudomonas aeruginosa. J Sci Ind Res, 66(8): 627-631.
  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006). Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol, 44(1): 417-45.
  • Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol, 183(12): 6454-6465.
  • Mavrodi DV, Parejko JA, Mavrodi OV, Kwak Ý, Weller DM, Blankenfeldt W, Thomashow LS (2013). Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ Microbiol, 15(3): 675– 686.
  • McFarland AJ, Anoopkumar DS, Perkins AV, Davey AK, Grant GD (2012). Inhibition of autophagy by 3-methyladenine protects 1321N1 astrocytoma cells against pyocyanin- and 1-hydroxyphenazineinduced toxicity. Arch Toxicol, 86(2): 275–284.
  • Meader PD, Robinson GH, Leonard V (1925). Pyorubrin, a red water-soluble pigment characteristic of B. pyocyaneus. Amer. J. Hyg., 5: 682.
  • Migula W (1900). System der Bakterien, vol 2. Gustav Fischer, Jena, Germany.
  • Moayedi A, Nowroozi J, Sepahy AA (2017). Effect of fetal and adult bovine serum on pyocyanin production in Pseudomonas aeruginosa isolated from clinical and soil samples. Iran. J. Basic Med. Sci., 20(12): 1331-1338.
  • Mohamed NFH, Diaa AM, Sherien MRE (2020). Toxicity evaluation and antimicrobial activity of purified pyocyanin from Pseudomonas aeruginosa. Biointerface Res. Appl. Chem, 10(6): 6974 – 6990.
  • Muller M (2011). Glutathione modulates the toxicity of, but is not a biologically relevant reductant for the Pseudomonas aeruginosa redoxtoxin pyocyanin. Free Radic. Biol. Med., 50(8): 971-977.
  • Muller M, Li Z, Maitz PK (2009). Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: role for p38 mitogenactivated protein kinase. Burns, 35(4): 500-508.
  • Munhoz LD, Fonteque JP, Santos IMO, Navarro MOP, Simionato AS, Goya ET, Rezende MI, Balbi PMI, De OAG, Andrade G (2017). Control of bacterial stem rot on tomato by extracellular bioactive compounds produced by Pseudomonas aeruginosa LV strain. Cogent food agric., 3: 1–16.
  • Narano Y (1966). Studies on red pigments production of Pseudomonas aeruginosa (strain no. 145). Report 111. J. Kansai med. Sch., 18: 11.
  • Nikolaus G, Wulf B, Rolf B (2017). Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg. Med. Chem., 25(22): 6149-6166.
  • Olja S, Marta S, Mignon DF, Christopher MC, Livia SE, Jason BS, Keith JS (2019). Real-time electrochemical detection of Pseudomonas aeruginosa phenazine metabolites using transparent carbon ultramicroelectrode arrays. ACS Sensors, 4(1): 170-179.
  • Pai SS, Anas A, Jayaprakash NS, Priyaja P, Sreelakshmi B, Preetha R, Singh ISB (2010). Penaeus monodon larvae can be protected from Vibrio harveyi infection by pre-emptive treatment of a rearing system with antagonistic or non-antagonistic bacterial probiotics. Aquac Res, 41(6): 847 – 860.
  • Palchevskaya YS (2015). Studying phenazine derivatives from Pseudomonas aeruginosa. Adv Mat Res, 1097: 69–72.
  • Palleroni N (2010). The Pseudomonas story. Environmental Microbiology, 12: 1377-8310.
  • Pham TH, Boon N, De MK, Monica H, Korneel R, Willy V (2008). Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol, 80(6): 985–993.
  • Pierson LS, Pierson EA (2010). Metabolism and function of phenazines in bacteria: Impacts on the behaviour of bacteria in the environment and biotechnological process. Appl. Microbiol. Biotechnolol., 86(6):1659–1670.
  • Prabhu MS, Walawalkar YD, Furtado I (2014). Purification and molecular and biological characterisation of the 1-hydroxyphenazine, produced by an environmental strain of Pseudomonas aeruginosa. World J Microbiol Biotechnol, 30(12): 3091-9.
  • Pratiwi RH, Hidayat I, Hanafi M, Mangunwardoyo W (2020). Isolation and structure elucidation of phenazine derivative from Streptomyces sp. strain UICC B-92 isolated from Neesia altissima (Malvaceae). Iran J Microbiol, 12(2): 127-137.
  • Preetha R, Jose S, Prathapan S, Vijayan KK, Jayaprakash NS, Philip R, Singh ISB (2010). An inhibitory compound produced by Pseudomonas with effectiveness on Vibrio harveyi. Aquac Res, 41(10):1452–1461.
  • Priyaja P, Jayesh P, Philip R, Singh ISB (2016). Pyocyanin induced in vitro oxidative damage and its toxicity level in human, fish and insect cell lines for its selective biological applications. Cytotechnology, 68: 143–155.
  • Quinn PJ, Markey BK (2003). Concise review of veterinary microbiology. Blackwell Publishing, 42.
  • Rahman PK, Pasirayi G, Auger V, Ali Z (2009). Development of simple and low-cost micro-bioreactor for high throughput bioprocessing. Biotechnol Lett, 31(2): 209-214.
  • Samanta S, Thavasi R, Jayalakshmi S (2008). Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res. J. Microbiol., 3(3): 122-128.
  • Schoental R (1941). The nature of the antibacterial agents present in Pseudomonas pyocyanea cultures. Br J Exp Pathol, 22(3): 137–147.
  • Shanmugaiah V, Mathivanan N, Varghese B (2010). Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J. Appl. Microbiol., 108(2): 703-11.
  • Simionato AS, Navarro MO, de Jesus M, Barazetti AR, da Silva CS, Simões GC, Balbi-Peña MI, de Mello JC, Panagio LA, de Almeida RS, Andrade G, de Oliveira AG (2017). The effect of phenazine-1-carboxylic acid on mycelial growth of botrytis cinerea produced by Pseudomonas aeruginosa LV strain. Frontiers in Microbiology, 8: 1102.
  • Sirisha K, Ganesh KC, Kallaganti VSR, Shravan KG (2017). Phenazine-1-carboxamide, an extrolite produced by Pseudomonas aeruginosa strain (CGK-KS-1) isolated from Ladakh and India, and its evaluation against various Xanthomonas spp. Microbiol. Biotechnol. Lett. 45(3): 209–217.
  • Sismaet HJ, Banerjee A, McNish S, Choi Y, Torralba M, Lucas S, Goluch ED (2016). Electrochemical detection of Pseudomonas in wound exudate samples from patients with chronic wounds. Wound Repair Regen, 24(2): 366–372.
  • Sorensen RU, Joseph F (1993). Phenazine pigments in Pseudomonas aeruginosa infection. Infect. agents pathog., 43–57.
  • Su JJ, Zhou Q, Zhang HY, Li YQ, Huang XQ, Xu YQ (2010). Medium optimization for phenazine-1-carboxylic acid production by a gacA qscR double mutant of Pseudomonas sp. M18 using response surface methodology. Bioresour. Technol., 101(11): 4089-95.
  • Sudhakar T, Karpagam S, Shiyama S (2013). Antifungal efficacy of pyocyanin produced from bioindicators of nosocomial hazards. Int J ChemTech Res, 5: 1101-1106.
  • Sun X , Yin X, Ling C, Jin X , Hong N (2021).The salt-tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Microbiol. Res., 245(8):126673.
  • Sunish KR, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2004). Characterization of anti-fungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J Appl Microbiol, 98(1):145-154.
  • Sweden EG (2010). Study the effect of antibiotics on pyocyanin production from Pseudomonas aeruginosa and pyocyanin as antibiotic against different pathogenic bacteria. J Univ Anbar Pure Sci, 4(1):15-18.
  • Takeda R (1958). Pseudomonas pigments. II. Two pigments, I-phenazine carboxylic acid and hydroxychlororaphine produced by Pseudomonas aeruginosa T 359. Hakko Kogaku Zasshi, 36: 286-29.
  • Trung NT, Cuong NT, Thao NT, Anh DTM, Tuyen DT (2020). Elucidation and identification of an antifungal compound from Pseudomonas aeruginosa DA3.1 isolated from soil in Vietnam. Jundishapur J Microbiol, 13(10): e103792.
  • Turner JM, Messenger AJ (1986). Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol., 27:211–275.
  • Wahba AH (1965). Pyorubrin-producing Pseudomonas aeruginosa. Appl. Microbial., 13: 291.
  • Wang S, Huang Z, Wan Q, Feng S, Xie X, Zhang R, Zhang Z (2020). Comparative genomic and metabolomic analyses of two Pseudomonas aeruginosa strains with different antifungal activities. Frontiers in Microbiology, 11: 1841.
  • Wrede F, Strack E (1924). Pyocyanine, the b1ue pigment of Bacillus pyocyaneus 1. Z. Physiol. Chem. (Hoppe-Sey1er’s), 140: 1-15.
  • Xiao J, Thwe AA, Liu TT, Dafei G, Wanhua L, Changhua S, Lu SJ (2021). Anti-inflammatory effects of an extract from Peudomonas aeruginosa and its purified product 1-hydroxyphenazine on RAW264.7 cells. Curr Microbiol, 78(7): 2762–2773.
  • Zahraa JJ, Anaam FH, Muthana AA, Nuha FA, Eman SA (2017). Bioactivity of pyocyanin of Pseudomonas aeruginosa clinical isolates against a variety of human pathogenic bacteria and fungi species. Int. J. Antimicrob. Agents, 7(3).
  • Zhang L, Tian X, Shan K, Liu G, Zhang C, Sun C (2017). Antagonistic activity and mode of action of phenazine-1-carboxylic acid, produced by marine bacterium Pseudomonas aeruginosa PA31x, against Vibrio anguillarum in vitro and in a Zebrafish in vivo model. Front Microbiol, 8: 289.
  • Zhang Y, Wang C, Su P, Liao X (2015). Control effect and possible mechanism of the natural compound phenazine-1-carboxamide against Botrytis cinerea. Plos one, 10(10): e0140380.
  • Zhao J, Wu Y, Alfred AT, Wei P, Yang S (2014). Anticancer effects of pyocyanin on HepG2 human hepatoma cells. Letters in applied microbiology, 58(6): 541-548.
  • Ramkrishna D, Sengupta S, Dey BS, Ghosh A (2021). Advances in Bioprocess Engineering and Technology (Select Proceedings ICABET 2020). Study on the Antioxidant and Cytotoxic Properties of Pyocyanin Extracted from Pseudomonas. Lecture notes in bioengineering, Chapter 13: 133–141.