SYMMETRIZED *(p,h)-***CONVEXITY AND SOME HERMITE-HADAMARD-TYPE INEQUALITIES**

Le Ba Thong¹

Received Date: 22/5/2023; Revised Date: 21/8/2023; Accepted for Publication: 22/8/2023

SUMMARY

This paper introduces symmetrized *(p,h)-*convex functions and establishes some Hermite-Hadamardtype inequalities for the new class of functions.

Keywords: symmetrized (p,h)-convexity, (p,h)-convexity, p-convexity, h-convexity, harmonically convexity, Hermite-Hadamard inequality.

1. INTRODUCTION

A function *f* is said to be *convex* on a real interval *I* if

 $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y),$

for all $x, y \in I$ and $\lambda \in [0,1]$. An estimate of the (integral) mean value of a continuous convex function is known as Hermite-Hadamard inequality (Hadamard, 1893, Hermite, 1883). Precisely, if *f* is a convex function on a real interval *I* and $a, b \in I$ with $a < b$ then

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) dx \leq \frac{f(a)+f(b)}{2}.
$$

This inequality is one of the most useful inequalities in mathematical analysis. For new proofs, noteworthy extensions, generalizations, and numerous applications of this inequality, see e.g., (Dragomir & Pearce, 2003, Mitrinović & Lacković, 1985).

In recent years, convexity has been generalized and extended in various aspects using new and different concepts. These researches led to the appearance of several Hermite-Hadamard-type inequalities. Among these generalizations, two interesting concepts are *p-*convex functions (Zhang & Wan, 2007) and *h-*convex functions (Varošanec, 2007). They are defined as follows:

Definition 1.1 (Zhang & Wan, 2007). Let *I* ⊂ (0,∞) be an interval and $p \in \mathbb{R} \setminus \{0\}$. We say that $f: I \to \mathbb{R}$ is a *p*-convex function if

$$
f\left(\left[\alpha x^p + (1-\alpha)y^p\right]^{1/p}\right) \leq \alpha f(x) + (1-\alpha)f(y),
$$

for all $x, y \in I$ and $\alpha \in [0,1]$.

Definition 1.2 (Varošanec, 2007). Let I, J be two real intervals with $J \supseteq (0,1)$ and let $h: J \to \mathbb{R}$ be a non-negative and non-zero function. We say that $f: I \to \mathbb{R}$ is a *h*-convex function if f is non-negative and

$$
f(\alpha x + (1 - \alpha)y) \le h(\alpha) f(x) + h(1 - \alpha) f(y),
$$

for all $x, y \in I$ and $\alpha \in (0,1)$.

These functions are continuously generalized to (*p,h*)-convex functions by Fang & Shi (2014):

Definition 1.3 (Fang & Shi, 2014). Let $I \subset (0, \infty)$ and $J \supseteq (0,1)$ be two real intervals, $p \in \mathbb{R} \setminus \{0\}$, and let $h : J \to \mathbb{R}$ be a non-negative and non-zero function. We say that $f: I \to \mathbb{R}$ be a *(p,h)-*convex function if *f* is non-negative and

$$
f\left[\left(\alpha x^p + (1-\alpha)y^p\right]^{1/p}\right) \leq h(\alpha)f(x) + h(1-\alpha)f(y),
$$

where $x, y \in I$ and $\alpha \in (0, 1)$

for all $x, y \in I$ and $\alpha \in (0,1)$.

In (Fang & Shi, 2014), the authors also derived Hermite-Hadamard-type inequalities for the class of *(p,h)-*convex functions as follows:

$$
\frac{1}{2h(\frac{1}{2})}f\left(\left[\frac{a+b}{2}\right]^{1/p}\right) \leq \frac{p}{b^p - a^p} \int_a^b x^{p-1} f(x) dx
$$

\n
$$
\leq (f(a) + f(b)) \int_0^1 h(t) dt. \quad (1.1)
$$

In particular, if $p = -1$, (p,h) -convex functions become harmonically *h-*convex functions which are studied firstly by Noor & et al. (2015).

A significant generalization of *h*-convex functions is symmetrized *h*-convex functions, which are introduced by Dragomir (2016). To give this concept, the authors considered a symmetrical transform \overline{f} of f on $[a,b]$ which is defined by $\overline{f}(x) = \frac{1}{2} [f(x) + f(a+b-x)].$

Then we say $f:[a,b] \to [0,\infty)$ is symmetrized *h*-convex function on $[a,b]$ if f is *h*-convex on [a,b]. Moreover, if *h* integrable on [0,1] and *f* integrable on $[a,b]$, Hermite-Hadamard-type inequality for symmetrized *h-*convex function is given as follows (Dragomir, 2016):

$$
\frac{1}{2h(\frac{1}{2})}f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx
$$

$$
\le [f(a) + f(b)] \int_0^1 h(x)dx. \quad (1.2)
$$

¹ Faculty of Natural Science and Technology, Tay Nguyen University; Corresponding author: Le Ba Thong; Tel: 0978165041; Email: lbthong@ttn.edu.vn